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It has recently been shown that the third law of thermodynamics is violated by an entire class of classical
Hamiltonians in one dimension, over a finite volume of coupling-constant space, assuming only that certain
elementary symmetries are exact, and that the interactions are finite ranged. However, until now, only the
existence of such Hamiltonians was known, while almost nothing was known of the nature of the couplings.
Here we show how to define the subvolume of these Hamiltonians—a “wedfjeih a d-dimensional
space—in terms of simple properties of a directed graph. We then give a simple expression for a specific
Hamiltonian* in this wedge, and show th&t* is a physically reasonable Hamiltonian, in the sense that its
coupling constants lie within an envelope that decreases smoothly, as a function of thé,remgero at
I=r+1, wherer is the range of the interactiofS1063-651X97)00712-3

PACS numbef): 64.60.Cn, 75.10.Hk

[. INTRODUCTION can imply degeneracy is familiar. For the discrete classical
chain, CW showed that, under suitable circumstances, the

It is sometimes stated] that all materials in their lowest- degeneracy arising from symmetry can result in a nonzero
energy states are perfect crystals, i.e., that matter at ze@ntropy density, throughout a finite volume of the space of
temperature is characterized by periodic order of the atomgoupling parameters. In this phase, termeB-pair phase,

If this is true, it follows that disorder persisting to low tem- almost all the ground-state configurations are aperiodic. The
peratures, in amorphous solids for example, must be intef2-pair phase is robust in the sense that it is not sensitive to
preted as a result of trapping of the system in a metastablgmall perturbations in the coupling constants defining the

state. Another consequence is that the third law of thermoHamiltonian, as long as these perturbations respect the sym-
dynamics holds in the Planck forfi2,3], which states that metry and the restriction to interactions of ranget is also

the entropy density tends to zero as the temperaure®. sufficiently robust to persist to finite temperatures.

These statements, however plausipié have not been CW considered two symmetries in detail: spatial inver-
proved[5]. One might aim to prove that any physically rea- sion (1), and spin inversion §). They showed rigorously
sonable microscopic Hamiltonian describing a material has &hat, forS symmetry,D-pair phases exist if and only K is
unique ground state that is spatially periodic. More generodd, while forl symmetry, they exist fok=3 andr=2. The
ally, one wishes to know the minimal conditions on thelsing (k=2) case is exceptional in th&-pair phases occur
Hamiltonian sufficient to guarantee a periodic ground statewith | symmetry only for range=5.

Both problems are unsolved in general, but some progress Although the CW proof is constructive in the sense that it
has been made, particularly for one-dimensional sysf@ns provides a method for finding all possike-pair configura-
Radin and Schulmal6] showed that if attention is restricted tions for givenk andr, there are immediate open questions.
to a one-dimensional system of interacting classical unitdhe CW result establishes the existence or nonexistenbe of
(“spins”), each of which can exist in a finite numblerof ~ pairs in each case, but gives no information on the charac-
distinct states, with no interactions beyond a spatial range teristics of the region in the phase diagrdthe space of
then there exists a ground state that is periodic with period atoupling parametefccupied by théD-pair phase, when it
mostk'. In particular, if the ground state is nondegenerateexists—except that it has finite volume. One would like to
then it has perfect periodic order. know the size and location of th2-pair region. The location

Thus, in this class of model systems, disorder can occuis important, sincéd-pair phases are of little interest unless
only if the ground state is degenerate. This result can bgéhey occur in a physically reasonable part of the phase dia-
strengthened by the observation that degenerate grourgtam. For example, consider a Hamiltonian whose coupling
states occur only “rarely,” in the sense that they require fineconstants increase with spatial separation, and then drop to
tuning of the system’s paramete(soupling constanjsto  zero beyond the cutoff range We consider such a Hamil-
precise valueg3,7,8. In other words, degeneracy occurs tonian to be “unphysical.” Conversely, if thB-pair region
only on a set of measure zero in the space of Hamiltoniansncludes Hamiltonians whose couplings decrease smoothly
In the absence of accidental degeneracies, then, Radin aad a function of interaction rangereaching zero dt=r +1
Schulman’s result implies that the ground state of such #or beforg, then we would claim that the case has been made
discrete classical system is always periodic. that physically reasonable Hamiltonians can give ground

Recently, however, Canright and Wats@] (CW) have states violating the third law.
shown that this picture must be modified if the system is In this paper we investigate these questions. After Sec. Il,
constrained by an exact symmetry. The idea that symmetrwhich reviews the formalism used in the constructionDof

1063-651X/97/566)/64597)/$10.00 56 6459 © 1997 The American Physical Society



6460 GREG WATSON, GEOFF CANRIGHT, AND FRANK L. SOMER, JR. 56

' and its energy density equals the average weight of the arcs
in the path:ie=E/N=X _f(o)n,, wheren,, is defined as the
@ average occurrence of an arcin the path. Thus, each spin

configuration is characterized by its arc densifiag}. The
arc densities are not all independent, since they satisfy flow
constraintg 7] that state that at each node the sums of incom-
ing and outgoing arc densities are equal. In addition, they
satisfy the inequalities€n, <1.

In this language, the Radin-Schulman result is easily un-

derstood. Any path in a graph may be decomposed into
@ simple cycleq(10] (SC9, where a SC is a closed path not
(b) () visiting any node more than once. & has a unique SC

with lower energy per spin than any other, then the nonde-
FIG. 1. (a) The graphG% . Configurations of a spin chain cor- generate periodic ground statetdfis generated by repetition
respond to infinite paths in the graph, and possible ground statesf that SC; if there are two or more lowest-weight SCs, then
correspond to simple cyclegsb) The symmetry-reduced graph there is always a periodic ground state generated by repeat-
SG{?, obtained from(a) by identifying nodes and arcs which are ing one of them. In either case, the period of the periodic
equivalent under spin-inversiors( symmetry. ground state is at most the number of node&|f , which is
K'.

pairs, we derive in Sec. Il results that characterize the de- That these SCs are true ground states, in our restricted
ometry of theD-pair region in terms of the combinatorial sense of being stable to perturbations in the Hamiltonian, is
properties of the corresponding graph cycles. In Sec. IV, Weeadily understood using the idea of the correlation polytope

Hamiltonian corresponding to any givéh-pair. We prove

that this Hamiltonian has couplings that fall off approxi-
mately linearly with distance, which shows that it is indeed

possible to havé®-pair phases without pathological Hamil- .
tonians. where a denotes the sequence of integeps 01, . .. .pr);

there ared=(k—1)k" independent spin correlations, given
by the valuesp;=0,1, ... k—1 with py#0. To any con-
figuration of the chain correspondsladimensional vectos
The system of interest is composed of interacting classicadf correlations, and any Hamiltonian density can be written
units, forming an infinite one-dimensional chain. Eachas a linear combinatior{= —=J,s,= —J-s, where thel,,
“spin” o can takek distinct values, which we label are thed independent coupling parameters. However, the
0,1, ... k—1. A general Hamiltonian having interactions of mapping from configuration to correlation vector is not one-
maximum range can be written as to-one, and not all correlation vectors represent feasible con-
figurations. Specifically, the correlations and the arc densities
H=2 fo .0, o) 1) are linearly r_e_latec(Sec. V), and the qqnstraints:@ngsl .
i R L on arc densities translate to inequalities on the correlation
vector. They constraig to lie inside a convex polytope, and
where the sum is over all sites. Our interest is in groundhis is the correlation polytope{® .
states ofH, which are those configuratiodsr;} that mini- Because the Hamiltonian is a linear function of the corre-
mize the energy density in the thermodynamic limit, i.e.,lations, the ground states that are robust to small changes in
H=H/N with the number of sitetN—o. In particular, we couplingsJ, are precisely the vertices dﬁﬁk). By a simple
seek ground states that do not require fine tuning of couplingrgumen{7,8] the vertices can be shown to be in one-to-one
parameters to precise values; hereafter we restrict the tergorrespondence with the SCs G K and we arrive at the
ground state to mean minimum-energy states that are robugdsult that the ground states are “almost always” periodic.
with respect to small changes in the Hamiltoniéh.more  One can enumerate all possible ground states by finding all
precise definition in this context is given in RE8].) SCs of the graph.
Itis very useful to represent the Hamiltonian pictorially as  The argument just sketched does not apply when a sym-
a directed graptG® with energy weights assigned to the metryX is imposed, forcing symmetry-related arc weights to
arcs[3,7-9. An example, withk=2 andr=2, is shown in  be equal. If the lowest-weight SC is not symmetry invariant,
Fig. 1(@. The graph ha&' nodes, each representing a pos-there must be a pair of degenerate lowest-weight SCs. If
sible sequence af spins in the system. The arcs in the graphthese do not share a node, there exist two symmetry-broken
correspond to the operation of spatial translation in the chaiperiodic ground-states. If they share one or more nodes, the
by one unit: a directed arc connects two nodes if the rightdomain wall energy between them is zero, so that there are
mostr — 1 spins of one agree with the leftmast 1 spins of  infinitely many degenerate ground state configurations, most
the other. The arc pointing from the node of which are mixtures with a nonzero density of domain
(09,01, -..,0,_1) tothe node §;,05, ...,0,) isassigned walls. The latter case is th2-pair phase, so called since it
an energy weight(og,04, . . .,0,). Any spin configuration comes from a pair of symmetry-broken configurations, and is
of the chain is represented by an infinite path in the graph¢characterized by degeneratnfinitely many ground states,

_/ PP P
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Il. GRAPHS, CORRELATION POLYTOPES, AND D PAIRS
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yielding a nonzero entropy densitgnd disordefalmost all By the phase diagram, we mean tti€’-dimensional space

the ground states have no long-range order (reduced fromd dimensions by the constraints arising from
A simple examplg8] illustrating the idea of @& pair is  symmetry of the coupling parametex, .
thek=3,r=1 model First, let us discuss the problem unconstrained by symme-
5 b 5 try. We ask, what is the regio of J space in which a given
H=—(o)+(o70{; 1), () configuration(i.e., SQ w is the ground state? In principle, it

is a region bounded by hyperplanes corresponding to the
inequalitiesH(w)<H(w'), wherew’ ranges over all other
SCs. However, in general some of these inequalities are re-
dundant. We wish to determine the minimal set of inequali-
ties needed to specifW fully. The following two lemmas
provide a solution to this problem.

Lemma 1 Suppose the S@ corresponds to a vertexof
the correlation polytope. The regidil of the phase diagram

where the spingr; can take the values 0 and1 and the
angular brackets denote an average over the chiis. in-
variant under spin inversionSj symmetry,oc— —o. It is
useful to transform to the variables=202—1, which take
the values+ 1. The Hamiltonian becomes, apart from irrel-
evant constantsi{= (77, 1), the Ising antiferromagnet. Its
antiferromagnetic ground state, when transformed baak to

variables, is (.. =0=0...),where eacht spin can take i which  is a ground state is specified by the inequalities

any value independent of all the others. J-(v—V’)>0, wherev’ ranges over the vertices neighboring
The degeneracy and disorder in the ground state appears | o  those vertices connected I?{k) to v by a one-

in this exam.'“'e as a trivial consequence of the dOUble'Valuegimensional edge. Furthermore, this set of inequalities is
tra_msformatm_)n between a_n(_d g The reader should not be minimal in the sense that if any one of them is omitted the
misled by this apparent triviality. The point iH space rep- resulting region is strictly larger thaW.

resented by Eq.3) may indeed be mapped tovariables in . G
such a way that the degeneracy and disorder vanish. How- Proof Let {vy,v,, ... .vg} be the vertices of;™ with

ever, this point is surrounded by a finite volurfend hence Y1~ V: and supposév, v, . . . Vp} are the neighbors of;.

e - ThenW is the set ofJ such that- (v;—v,;)<0 for 2<i=q,
an uncountable numbeof other Hamiltonians, all of which o P
h th d t d disordered d states— in we deﬁne.N to be the set 0 such that)- (v;—v;)<0
ave the same cegenerate anc cisorcered ground states ?or 2<i<p. SinceWCW’, to proveW=W' we must show

none of these other points may be mapped ta@riables. ,
Specifically, we can add to th&{ in Eq. (3) the term W CW. ) ®

(o01+1) with a small coefficient. This terrfi) conforms to It follows frqm the convexﬂy ofP; . that the set of vec-

our assumptions that=1 and that{ obeysS symmetry;(ii)  ©O'SVi—V, 2<i=<p, fromv; to its neighbors spans the full

spoils the possibility of a mapping te variables;(iii) does ~ d-dimensional space. In fact, fgrp,

not split the degeneracy of the state.( 0+0+0...) of

Eqg. (3); and(iv) leaves the latter state as the ground state. It

is precisely this robustness to variationsHthat both char- Vi _Vl:izz ai(Vi—va), (4)

acterizes & pair, and shows that the ground-state degen-

eracy is not trivial.[For a specificD-pair H that is not

“trivializable” by a many-to-one mapping, see E() be-

low.]

p

for some @;=0, with at least twoa;#0 [11]. If JeW’,
taking its dot product with both sides of E@4) yields
J-(vj—vy)<0, and henc& e W, as required.

DefineW"” as forW' but omitting one neighbor, say,.
Sincev, is a neighbor ofv; and sinceP® is convex, there

To studyD-pairs for generak andr, CW introduced the exists a hyperplane of dimensionr- 1 intersectingDEk) only
concept of the reduced graphG{¥. Not all symmetry- in the edge joining/; andv,. LetJ be a perpendicular vector
related pairs of SCs oB¥ correspond to possible ground to this plane from the origin. The sign dfcan be chosen so
states in the presence of symmetry, because the equality 8fat J-(vi—vy)<O0 for i>2, and thusJeW’, while
symmetry-related arc weights can imply the existence of & (vV.—V;)=0 impliesJ ¢ W.
third SC with lower energy than the original pair. We referto  Lemma 2 Two vertices inP are neighbors if and only
this situation as decomposition of a SC pair. The definitionsf the corresponding SCs @ have zero or one contacts,
of the symmetry-reduced grapﬁ‘GEK) and its SCs are tai- where a contact is a consecutive sequence of one or more
lored to take care of decomposing SCs, in such a way thathared nodes.
the possible ground states are in one-to-one correspondence Proof. The vector of arc densities, has dimension equal
with SCs of XGM . For S symmetry, the reduced graphig. ~ to the number of arcs, but the flow constrait@ec. 1) con-
1(b)] is constructed by identifying each node or arc with itsstrain it to lie in ad-dimensional subspace, which we denote
inverse, and SCs are defined as usual as paths that do it P'. It is the image ofPﬁk) under a nonsingular linear
self-intersect. Fot symmetry, the definition of the reduced transformationM from s to n (see Sec. IV for explicit rela-
graph and its SCs is more involved; we refer the reader taions). It follows that neighboring vertices & correspond
CW for the technical details, including the classification ofto neighboring vertices oP’. Two verticesv, andv, are
SCs into four topological types. neighbors if and only if any point\;v;+X\,v, (with

The reduced grapKG allows the enumeration of the \,+\,=1) on the line segment joining them cannot be writ-
ground-state spin configurations for 8lkpair phases with a ten as a weighted average of vertices in any other way. Sup-
givenk andr. Here, we address the question of the region inpose two SCs have two contacts, as illustrated schematically
the phase diagram in which a giv@rpair phase is stable. in Fig. 2. Recognizing that the four arc sequences défine

Ill. CHARACTERIZING THE D-PAIR REGION
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FIG. 2. Schematic picture of simple cycles®{“ having two
contacts. The two circles represent the cycles, made up of arc se-
quences labeled with weights to n,, and the large dots are the
contacts, which may consist of more than one node.

distinct SCs, we can consider a general convex combination

including coefficients\ ; for the inner cycle(arcs 2 and 8

and\ , for the outer cyclgarcs 1 and # A point on the line

segment joining the corresponding verticesPihhas densi- FIG. 3. The reduced grapfG%> .

tiesn;=ns=N andn,=n,=1—N\. Clearly, there are many )

convex combinations of vertices yielding the same densitieions, a contact between SCs means a common stringof

for example, ifA<1/2 we can take\;=0, A\,=1—2\ and  MOre spins. . _

N3=X\,=\. Hence the two SCs correspond to vertices that L€t us now consider the analogous problem in the pres-

are not neighbors. Conversely, if the SCs have fewer thafNc€ of a symmetrX. Since Lemma 1 relies only on the

two contacts there is only one way to express points in dentlamiltonian density being a scalar product, it applies di-

sity space on the segment joining them as a convex combl€ctly to the symmetry-constrained problem, i.e., the in-

nation of SCs, and so they correspond to neighboring vertiequalities defining the stable regigth come from neighbor-

ces. ing vertices of the reduce(projected correlation polytope
We remark that the reasoning in lemma 2 is very similar*P{ . Lemma 2 also goes through unchanged in the case of

to that leading to decomposition of pairs of S@gcept that S symmetry, since the definition of SCs 86" is the same

in lemma 2 the SCs need not be related by symmeTiyis  as that forG® . However, lemma 2 does not apply when the

has a simple geometrical interpretation. A symmetry imposesymmetry isl .

linear constraints on the coupling parametds, which As in the proof of lemma 2, it is clear that a pair of SCs in
means that the relevant space of correlations is a reduce'q;gk) represent neighboring vertices |.ﬁ>§k) if and only if
polytope *P{*) obtained by symmetry projection ®™.  there do not exist two or more new SCs ‘@™ using only

When symmetry-related pairs of vertices Bf are pro-  arcs from the original pair. Because SCs fosymmetry

jected, the ones that become vertices*8{* are those that may, when unfolded int&(® , represent pairs of intersecting

are connected by an edge. Indeed, the CW definition of SCgycles, there is more freedom to form these new SCs than in

of XGM (for X=S or 1) is constructed so as to include all the absence of symmetry. We find that when the intersection

cycles inG™® that have at most one contact with their sym- does not contain a symmetric node, then one contact between

metry partners. There is, however, one category of nonddhe original SCs may be enough to imply new SCs. Specifi-

composing SC pairs that does not correspond to neighboringglly, we find the following:

vertices. It has the form of Fig. 2 in the case that symmetry Lemma 2. Forl symmetry, two SCs ofG® correspond

forces the weights to satisfy; =w, andws;=w,. This situ- to neighboring vertices if and only if one of the following

ation occurs withl symmetry for a type four SC, when the conditions is satisfied(i) they have no contactdji) they

two contacts are symmetry inverses of each other. Becauseve one contact and one of them is of type 6ree, unfolds

of the weight constraints all four cycles in the diagram haveto nonintersecting cyclgs (iii) they have one contact that

equal energy, and the original pair does not decompose. Ihcludes a symmetric nodén the last case, both SCs must

corresponds to two non-neighboring vertices of a quadrilatbe type two or threg.

eral face ofP®, such that all four vertices of the face map  Let us illustrate our results with the examplelof 3 and

to the same vertex ofP® under the symmetry. r =2 for bothS andl symmetries. As in Sec. Il we shall take
Lemmas 1 and 2 show how to determine the region irthe allowed spin values to he=0 and+1.

coupling space corresponding to a given ground-state con- Figure 3 shows the grapfGS. It has 14 arcs, and 5

figuration; in fact, they provide an algorithm for doing this. nodes, each of which implies a flow constraint, leaving 9

From lemma 1, only neighboring vertices need be considindependent arc densities, i.@(®=9. The 9 symmetry-

ered. Lemma 2 translates the concept of neighboring verticdgvariant ~ correlations — are s,=(c?), s,=(0i0i1),

into properties of graph cycles. In terms of spin configura-s;=(aioi.,), S4=(o20?,,), ss={(o’a?,,), plus four cor-
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there are 15 inequalities constraining the 14 distinct
I-invariant correlations. Again, we do not list them here, but
simply display a particular solution, which happens to in-
volve only S-invariant pairwise interactions:

H=(0i0i.1) T {070, ,). (7)

The ground state is (.. 00+ =00+ *00...), where the
spins in each £ &) segment may be chosen independently
to be (+—) or (—+). Once again, one can check that this
degeneracy is not split by any of the 14 possibiavariant
perturbing terms that may be added to the Hamiltonian.

IV. EXPLICIT D-PAIR HAMILTONIAN

The techniques described in the previous section can be
used to find the region of stability corresponding to any
given D-pair, for S or I symmetry. However, the analysis

FIG. 4. The reduced grapte . becomes tedious for large andr. In this section, we de-
scribe a simple construction for finding a single poft;, in
relations involving three spins; the Hamiltonian density isth€ Stable region. _
written in terms of its 9 coupling parameters as The constuction is pased on thg opservauon that the arc
H=—-3J,s,. The graph has 19 distinct SCs, 5 of which areyvelghts, which pletermme the Hamﬂtoman, can all be chogen
D-pairs using the invariant node (00). For example, let uéndependentl)_/, i.e., for_ any ch0|pe of arc weights there exists
consider theD-pair SCw=(00=). To find its stable region, a corresponding HamiltoniariThis statement should not be

we need only consider the 10 SCs that represent neighbors §pnfused with the fact that the adensitiesare not indepen-
w, according to lemma 2. One neighboring SC is the ferro-dem becausp of the flow .const.ralnts, and hence that the map
magnetic state (00); comparing its energy to thabafields  [TOM arc weights to coupllng\%f(, |szkr)1ot one-to_-one;leen a

the conditionJ; >0, so we may sel;=1. For each of the 9 D pair defined by a St of "G;™, we define}i* as the
other neighboring SCs one can write down the correspondinffamiltonian corresponding to the following assignment of
inequality on the 8 remaining couplings directly from the &rC Weightsw..is —1 if the arcr occurs in the u(E)foIdmg of
graph. We do not list them here; let us merely display athe D-pair SC into two intersecting cycles &, and 0
typical solution: otherwise. In terms of arc densitieq}* is

He (DA ol © oS (o o

TEW

As in the example of Sec. Il it is informative to perform the

transformationr=20?~1 to Ising spins. The Hamiltonian \yhere the overbar denotes symmetry inversion. By construc-
becomes tion, the givenD-pair phase is the ground statef : since

the energy is the average arc weight, any of Eh@air spin
configurations has energyl, while other configurations use

hich i Isi del with antif i some weight 0 arcs and have higher energy.
which represents ‘an Ising model with antiterromagnetic Eq. (8), H* is written in terms of arc densities. The

nearest- and next-nearest-neighbor interactions and a Mags.. are related to the correlations as follows. If

netic field favoring the— state. It is easy to check that the 7= (10,7 1), then

ground state is £ —+), or in ¢ variables, (0&), as re- 0Ly e et

quired. Thus we have the degeneracy and disorder character- n,=(5,.5 LS ) 9)

istic of aD pair. Its robustness to perturbations in the Hamil- TONCiT0Tin TierTel

tonian follows from the fact that all 9 correlations take

identical values on every degenerate configuration; i.e., n

perturbation made up of; to sy can split the degeneracy.
The corresponding reduced graph fbrsymmetry is k=1

shown in Fig. 4. For ease in drawing we have distorted the _ . - p

symmetry lineZ into a circle and omitted the ferromagnetic Oy 7]1,;[” (o=n")I(n=n") pzo Xpyote (10

arcs joining eacH-invariant node taZ. This graph has 32

distinct SCs, most of which are of type three, unfolding toThe product is over all spin valueg not equal tor, and the

invariant cycles irG(Zs). There are thregype two D pairs,  second equality defines the numbets, as the coefficients

of which we shall consider the example (06-)/(00+—). in the polynomial expansion of the product. When this is

It has 15 neighbors according to lemmg damely, the fer- substituted into Eq(9) the arc densities are given as a linear

romagnetic SCs,, the type one SCH6-)/(0—+), and the  combination of spin correlations. From E@), this yields an

10 type three SCs which use the symmetric node (00). Thuexpression forH{* in terms of the correlations. As an ex-

H=(7i7i12) +(1iTi+2) + 2(7), ©)

he Kronecker delta, as a function of a spin variat]ecan
e written as a degrde—1 polynomial according to
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ample, when this procedure is applied to Bwpair (+0) for  |sing spins, yielding(apart from a constantd,=(r—|
k=3, r=1 with S symmetry, the result is the Hamiltonian | 1)[t_+s.i]. Under the assumption that the correlatiops
(3), discussed in Sec. II. depend weakly oh, we find again that the dominant distance

~ Let us investigate further the structureXf . Its expres-  gependence df, is a linear falloff to zero beyond the cutoff
sion in terms of correlations, from substituting E(K0)) and  rgnge.

(9) into (8), is

p k-1 k-1 V. DISCUSSION
* = —_— ...
H le pOE:O plzzo The existence oD-pair phases is interesting from a the-

oretical point of view. However, we are not aware of any

< obvious candidate material for their realization in nature. We
X pzo XporiXpyrjyq™ " Xpprg, note that there is an entire class of materials, namely, layered

' solids or polytypes, that is well modeled by effective Hamil-
X(oToTt -+ ot Y +sii. (11)  tonians such as those studied here. This class of materials is,

however, quite large; and the few effective Hamiltonians that
Here, 7; denotes theth spin (using any arbitrary starting are known from this class do not show promise of having a
point) of the configuration defined by the S&, andp is the  D-pair phase as the ground stat€ee the discussion and
period of . The second term, not written explicitly, is the references in Ref.12].)
symmetry inverse(s.i) of the first—that is, everyr— r. Thus, there are significant obstacles to findivgairs in
Considerarangbcorrelationsa:<aiq°aiqil~ ) 'O-iq-li—l>’ where Practice. However, the result.s of Sec. IV of this paper re-
g and g are both nonzero. l<r, there are (—1+1) move one potent!a! .obstaclt'a. the possibility that the o_nly
teorms in Eq.(11) contributing toJ t'he coupling parameter Hamiltonians exhibitingD-pair phases are pathological in
o A \ a the dependence of their coupling parameters on distance. We
multiplying s, in 7*. We find would like the couplings to decrease smoothly to zero at the
[ cutoff range, otherwise it would seem unphysical to impose a
rigid cutoff beyond which there are no interactions. We have
constructed an explicit Hamiltonian for arbitrakyandr,
which hasD-pair ground states. Encouragingly, its couplings
are very well behaved: as a function of distance, they fall
linearly to zero at the cutoff.
€ Remaining obstacles concern the robustned3-phir be-
havior. AlthoughD-pairs are not destroyed by symmetric
perturbations of sufficiently short range or by nonzero tem-
perature, they are in general destroyed by including interac-
P tions beyond the cutoff. They are also destroyed by devia-
J,=2" D +1)2 o9 8 4ei (13 tions from perfect_ symmetry caused, for _example, by
“ s I+ external fields—which may or may not be strictly zero, de-
pending on the symmetry in question, and on the physical
This result is quite significant. It says that the valuelpfis,  identity of the “spins.” However, even when the degeneracy
apart from a constant 2" "% that we shall ignore, equal to is broken in such ways, behavior characteristicDofpairs
(r—1+1)[t,+s.i], wheret, is the correlatiors, evaluated may be observable at a suitable energy scale. If the pertur-
in the spin configuratiofr;} of the D pair. bations breaking thB-pair symmetry are small, they are not
Since a correlation for Ising spins has magnitude at mostanifest except at very small temperatures. At low but non-
1, this implies the boun¢l] ,|<(r —I+1). Further, we note zero temperatures, one would still expect to observe disor-
thatt,, is expected not to be strongly dependent on the rangdered states and nonzero entropy density. In that case, the
| of the couplingd,, . Roughly speaking, spin configurations techniques of Sec. Il of this paper apply directly to the prob-
that have long-range correlations tend also to be correlated #m of characterizing thé-pair region. (Possible experi-
short range. This idea is borne out by explicit computationsmental signatures ob-pairs have been investigated by Yi
for instance, for thel symmetry r=5 Ising D pair and Canrighf12].)
(+———++-), there are 23 symmetric correlations, each Another potential obstacle is the limitation to problems
of which takes one of the values1/7 or 3/7, with no sys- involving classical, discrete units. However, such models are
tematic dependence dnThus, the dominant contribution to likely to be good approximations for certain problems, such
J, comes from the factorr(~1+1). As a function of dis- as stacking polytypes of crystalsee CW and references
tance, this represents a linear decrease to zero at the cutafferein where the “spin” represents the discrete set of pos-
rangel=r+1. sible configurations of a single lattice plane. Another limita-
Fork>2, the situation is similar. Of course, the values oftion is the restriction to one-dimensional models. The ques-
the couplings depend on the choice of the set of allowed spition of whether similar behavior is possible in higher
values, which has been left arbitrary so far. However, for anydimensions is unexplored, although certain frustrated two-
k there exists a choice with the property that, is indepen-  dimensional models are known to have degenerate ground
dent of 5, namely, letting{o} be the complexth roots of  states of large periodicity13]. Finally, although we have
unity. For this choice, the surl2) simplifies as it did for shown thatD-pair phases are possible with Hamiltonians

r

e XOr X0y 1 Xagry T Xy T

p
Jo=2,
=1

XXO . 'XOTj+r+S'i' (12)

Tj+m+|+1‘
The structure of this expression is seen most clearly if wi
consider initially the case of Ising spink=2. Taking the
allowed spin values to be==*1, we havey,,=1/2 and
X1,= /2, and we arrive at the result
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