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Reasonable and robust Hamiltonians violating the third law of thermodynamics
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It has recently been shown that the third law of thermodynamics is violated by an entire class of classical
Hamiltonians in one dimension, over a finite volume of coupling-constant space, assuming only that certain
elementary symmetries are exact, and that the interactions are finite ranged. However, until now, only the
existence of such Hamiltonians was known, while almost nothing was known of the nature of the couplings.
Here we show how to define the subvolume of these Hamiltonians—a ‘‘wedge’’W in a d-dimensional
space—in terms of simple properties of a directed graph. We then give a simple expression for a specific
HamiltonianH* in this wedge, and show thatH* is a physically reasonable Hamiltonian, in the sense that its
coupling constants lie within an envelope that decreases smoothly, as a function of the rangel , to zero at
l 5r 11, wherer is the range of the interaction.@S1063-651X~97!00712-5#

PACS number~s!: 64.60.Cn, 75.10.Hk
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I. INTRODUCTION

It is sometimes stated@1# that all materials in their lowest
energy states are perfect crystals, i.e., that matter at
temperature is characterized by periodic order of the ato
If this is true, it follows that disorder persisting to low tem
peratures, in amorphous solids for example, must be in
preted as a result of trapping of the system in a metast
state. Another consequence is that the third law of therm
dynamics holds in the Planck form@2,3#, which states that
the entropy density tends to zero as the temperatureT→0.

These statements, however plausible@4#, have not been
proved@5#. One might aim to prove that any physically re
sonable microscopic Hamiltonian describing a material ha
unique ground state that is spatially periodic. More gen
ally, one wishes to know the minimal conditions on t
Hamiltonian sufficient to guarantee a periodic ground sta
Both problems are unsolved in general, but some prog
has been made, particularly for one-dimensional systems@3#.
Radin and Schulman@6# showed that if attention is restricte
to a one-dimensional system of interacting classical u
~‘‘spins’’ !, each of which can exist in a finite numberk of
distinct states, with no interactions beyond a spatial rangr ,
then there exists a ground state that is periodic with perio
most kr . In particular, if the ground state is nondegener
then it has perfect periodic order.

Thus, in this class of model systems, disorder can oc
only if the ground state is degenerate. This result can
strengthened by the observation that degenerate gro
states occur only ‘‘rarely,’’ in the sense that they require fi
tuning of the system’s parameters~coupling constants! to
precise values@3,7,8#. In other words, degeneracy occu
only on a set of measure zero in the space of Hamiltonia
In the absence of accidental degeneracies, then, Radin
Schulman’s result implies that the ground state of suc
discrete classical system is always periodic.

Recently, however, Canright and Watson@8# ~CW! have
shown that this picture must be modified if the system
constrained by an exact symmetry. The idea that symm
561063-651X/97/56~6!/6459~7!/$10.00
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can imply degeneracy is familiar. For the discrete class
chain, CW showed that, under suitable circumstances,
degeneracy arising from symmetry can result in a nonz
entropy density, throughout a finite volume of the space
coupling parameters. In this phase, termed aD-pair phase,
almost all the ground-state configurations are aperiodic.
D-pair phase is robust in the sense that it is not sensitiv
small perturbations in the coupling constants defining
Hamiltonian, as long as these perturbations respect the s
metry and the restriction to interactions of ranger . It is also
sufficiently robust to persist to finite temperatures.

CW considered two symmetries in detail: spatial inve
sion (I ), and spin inversion (S). They showed rigorously
that, forS symmetry,D-pair phases exist if and only ifk is
odd, while forI symmetry, they exist fork>3 andr>2. The
Ising (k52) case is exceptional in thatD-pair phases occu
with I symmetry only for ranger>5.

Although the CW proof is constructive in the sense tha
provides a method for finding all possibleD-pair configura-
tions for givenk andr , there are immediate open question
The CW result establishes the existence or nonexistenceD
pairs in each case, but gives no information on the cha
teristics of the region in the phase diagram~the space of
coupling parameters! occupied by theD-pair phase, when it
exists—except that it has finite volume. One would like
know the size and location of theD-pair region. The location
is important, sinceD-pair phases are of little interest unle
they occur in a physically reasonable part of the phase
gram. For example, consider a Hamiltonian whose coup
constants increase with spatial separation, and then dro
zero beyond the cutoff ranger . We consider such a Hamil
tonian to be ‘‘unphysical.’’ Conversely, if theD-pair region
includes Hamiltonians whose couplings decrease smoo
as a function of interaction rangel , reaching zero atl 5r 11
~or before!, then we would claim that the case has been m
that physically reasonable Hamiltonians can give grou
states violating the third law.

In this paper we investigate these questions. After Sec
which reviews the formalism used in the construction ofD
6459 © 1997 The American Physical Society
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6460 56GREG WATSON, GEOFF CANRIGHT, AND FRANK L. SOMER, JR.
pairs, we derive in Sec. III results that characterize the
ometry of theD-pair region in terms of the combinatoria
properties of the corresponding graph cycles. In Sec. IV,
provide a simple construction for writing down an explic
Hamiltonian corresponding to any givenD-pair. We prove
that this Hamiltonian has couplings that fall off approx
mately linearly with distance, which shows that it is inde
possible to haveD-pair phases without pathological Hami
tonians.

II. GRAPHS, CORRELATION POLYTOPES, AND D PAIRS

The system of interest is composed of interacting class
units, forming an infinite one-dimensional chain. Ea
‘‘spin’’ s i can take k distinct values, which we labe
0,1, . . . ,k21. A general Hamiltonian having interactions
maximum ranger can be written as

H5(
i

f ~s i ,s i 11 , . . . ,s i 1r !, ~1!

where the sum is over all sites. Our interest is in grou
states ofH, which are those configurations$s i% that mini-
mize the energy density in the thermodynamic limit, i.
H[H/N with the number of sitesN→`. In particular, we
seek ground states that do not require fine tuning of coup
parameters to precise values; hereafter we restrict the
ground state to mean minimum-energy states that are ro
with respect to small changes in the Hamiltonian.~A more
precise definition in this context is given in Ref.@8#.!

It is very useful to represent the Hamiltonian pictorially
a directed graphGr

(k) with energy weights assigned to th
arcs@3,7–9#. An example, withk52 andr 52, is shown in
Fig. 1~a!. The graph haskr nodes, each representing a po
sible sequence ofr spins in the system. The arcs in the gra
correspond to the operation of spatial translation in the ch
by one unit: a directed arc connects two nodes if the rig
mostr 21 spins of one agree with the leftmostr 21 spins of
the other. The arc pointing from the nod
(s0 ,s1 , . . . ,s r 21) to the node (s1 ,s2 , . . . ,s r) is assigned
an energy weightf (s0 ,s1 , . . . ,s r). Any spin configuration
of the chain is represented by an infinite path in the gra

FIG. 1. ~a! The graphG2
(2) . Configurations of a spin chain cor

respond to infinite paths in the graph, and possible ground st
correspond to simple cycles.~b! The symmetry-reduced grap
SG2

(2) , obtained from~a! by identifying nodes and arcs which ar
equivalent under spin-inversion (S) symmetry.
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and its energy density equals the average weight of the
in the path:e5E/N5(s f (s)ns , wherens is defined as the
average occurrence of an arcs in the path. Thus, each spi
configuration is characterized by its arc densities$ns%. The
arc densities are not all independent, since they satisfy fl
constraints@7# that state that at each node the sums of inco
ing and outgoing arc densities are equal. In addition, th
satisfy the inequalities 0<ns<1.

In this language, the Radin-Schulman result is easily
derstood. Any path in a graph may be decomposed
simple cycles@10# ~SCs!, where a SC is a closed path n
visiting any node more than once. IfGr

(k) has a unique SC
with lower energy per spin than any other, then the non
generate periodic ground state ofH is generated by repetition
of that SC; if there are two or more lowest-weight SCs, th
there is always a periodic ground state generated by rep
ing one of them. In either case, the period of the perio
ground state is at most the number of nodes inGr

(k) , which is
kr .

That these SCs are true ground states, in our restri
sense of being stable to perturbations in the Hamiltonian
readily understood using the idea of the correlation polyto
@7,8# Pr

(k) . The spin correlations are defined by

sa5^s i
p0s i 11

p1
•••s i 1r

pr &, ~2!

wherea denotes the sequence of integers (p0 ,p1 , . . . ,pr);
there ared5(k21)kr independent spin correlations, give
by the valuespi50,1, . . . ,k21 with p0Þ0. To any con-
figuration of the chain corresponds ad-dimensional vectors
of correlations, and any Hamiltonian density can be writt
as a linear combination,H52(Jasa52J•s, where theJa
are thed independent coupling parameters. However,
mapping from configuration to correlation vector is not on
to-one, and not all correlation vectors represent feasible c
figurations. Specifically, the correlations and the arc densi
are linearly related~Sec. IV!, and the constraints 0<ns<1
on arc densities translate to inequalities on the correla
vector. They constrains to lie inside a convex polytope, an
this is the correlation polytopePr

(k) .
Because the Hamiltonian is a linear function of the cor

lations, the ground states that are robust to small change
couplingsJa are precisely the vertices ofPr

(k) . By a simple
argument@7,8# the vertices can be shown to be in one-to-o
correspondence with the SCs ofGr

(k) , and we arrive at the
result that the ground states are ‘‘almost always’’ period
One can enumerate all possible ground states by finding
SCs of the graph.

The argument just sketched does not apply when a s
metryX is imposed, forcing symmetry-related arc weights
be equal. If the lowest-weight SC is not symmetry invaria
there must be a pair of degenerate lowest-weight SCs
these do not share a node, there exist two symmetry-bro
periodic ground-states. If they share one or more nodes,
domain wall energy between them is zero, so that there
infinitely many degenerate ground state configurations, m
of which are mixtures with a nonzero density of doma
walls. The latter case is theD-pair phase, so called since
comes from a pair of symmetry-broken configurations, an
characterized by degeneracy~infinitely many ground states

es



l-
s
o

e
ue
e

o

—

.

en

d
ty
f
to
n

-
th
e

its
o
d
r
o

e

i
.

m

me-

it
the

re-
li-

ies
g

is
he

ll

r

,
ore

l

te
r

it-
up-
ally

56 6461REASONABLE AND ROBUST HAMILTONIANS . . .
yielding a nonzero entropy density! and disorder~almost all
the ground states have no long-range order!.

A simple example@8# illustrating the idea of aD pair is
the k53, r 51 model

H52^s2&1^s i
2s i 11

2 &, ~3!

where the spinss i can take the values 0 and61 and the
angular brackets denote an average over the chain.H is in-
variant under spin inversion (S) symmetry,s→2s. It is
useful to transform to the variablest52s221, which take
the values61. The Hamiltonian becomes, apart from irre
evant constants,H5^t it i 11&, the Ising antiferromagnet. It
antiferromagnetic ground state, when transformed back ts
variables, is ( . . .6060 . . . ), where each6 spin can take
any value independent of all the others.

The degeneracy and disorder in the ground state app
in this example as a trivial consequence of the double-val
transformation betweent and s. The reader should not b
misled by this apparent triviality. The point inH space rep-
resented by Eq.~3! may indeed be mapped tot variables in
such a way that the degeneracy and disorder vanish. H
ever, this point is surrounded by a finite volume~and hence
an uncountable number! of other Hamiltonians, all of which
have the same degenerate and disordered ground states
none of these other points may be mapped tot variables.

Specifically, we can add to theH in Eq. ~3! the term
^s is i 11& with a small coefficient. This term~i! conforms to
our assumptions thatr 51 and thatH obeysS symmetry;~ii !
spoils the possibility of a mapping tot variables;~iii ! does
not split the degeneracy of the state (. . . 06060 . . . ) of
Eq. ~3!; and~iv! leaves the latter state as the ground state
is precisely this robustness to variations inH that both char-
acterizes aD pair, and shows that the ground-state deg
eracy is not trivial.@For a specificD-pair H that is not
‘‘trivializable’’ by a many-to-one mapping, see Eq.~7! be-
low.#

III. CHARACTERIZING THE D-PAIR REGION

To studyD-pairs for generalk andr , CW introduced the
concept of the reduced graphXGr

(k) . Not all symmetry-
related pairs of SCs ofGr

(k) correspond to possible groun
states in the presence of symmetry, because the equali
symmetry-related arc weights can imply the existence o
third SC with lower energy than the original pair. We refer
this situation as decomposition of a SC pair. The definitio
of the symmetry-reduced graphXGr

(k) and its SCs are tai
lored to take care of decomposing SCs, in such a way
the possible ground states are in one-to-one correspond
with SCs of XGr

(k) . For S symmetry, the reduced graph@Fig.
1~b!# is constructed by identifying each node or arc with
inverse, and SCs are defined as usual as paths that d
self-intersect. ForI symmetry, the definition of the reduce
graph and its SCs is more involved; we refer the reade
CW for the technical details, including the classification
SCs into four topological types.

The reduced graphXGr
(k) allows the enumeration of th

ground-state spin configurations for allD-pair phases with a
givenk andr . Here, we address the question of the region
the phase diagram in which a givenD-pair phase is stable
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By the phase diagram, we mean thed(X)-dimensional space
~reduced fromd dimensions by the constraints arising fro
symmetry! of the coupling parametersJa .

First, let us discuss the problem unconstrained by sym
try. We ask, what is the regionW of J space in which a given
configuration~i.e., SC! v is the ground state? In principle,
is a region bounded by hyperplanes corresponding to
inequalitiesH(v),H(v8), wherev8 ranges over all other
SCs. However, in general some of these inequalities are
dundant. We wish to determine the minimal set of inequa
ties needed to specifyW fully. The following two lemmas
provide a solution to this problem.

Lemma 1. Suppose the SCv corresponds to a vertexv of
the correlation polytope. The regionW of the phase diagram
in which v is a ground state is specified by the inequalit
J•(v2v8).0, wherev8 ranges over the vertices neighborin
v, i.e., those vertices connected inPr

(k) to v by a one-
dimensional edge. Furthermore, this set of inequalities
minimal in the sense that if any one of them is omitted t
resulting region is strictly larger thanW.

Proof: Let $v1 ,v2 , . . . ,vq% be the vertices ofPr
(k) with

v15v, and suppose$v2 ,v3 , . . . ,vp% are the neighbors ofv1.
ThenW is the set ofJ such thatJ•(vi2v1),0 for 2< i<q,
and we defineW8 to be the set ofJ such thatJ•(vi2v1),0
for 2< i<p. SinceW,W8, to proveW5W8 we must show
W8,W.

It follows from the convexity ofPr
(k) that the set of vec-

tors vi2v1, 2< i<p, from v1 to its neighbors spans the fu
d-dimensional space. In fact, forj .p,

vj2v15(
i 52

p

a i~vi2v1!, ~4!

for some a i>0, with at least twoa iÞ0 @11#. If JPW8,
taking its dot product with both sides of Eq.~4! yields
J•(vj2v1),0, and henceJPW, as required.

Define W9 as for W8 but omitting one neighbor, sayv2.
Sincev2 is a neighbor ofv1 and sincePr

(k) is convex, there
exists a hyperplane of dimensiond21 intersectingPr

(k) only
in the edge joiningv1 andv2. Let J be a perpendicular vecto
to this plane from the origin. The sign ofJ can be chosen so
that J•(vi2v1),0 for i .2, and thus JPW9, while
J•(v22v1)50 impliesJ¹W.

Lemma 2. Two vertices inPr
(k) are neighbors if and only

if the corresponding SCs ofGr
(k) have zero or one contacts

where a contact is a consecutive sequence of one or m
shared nodes.

Proof: The vector of arc densities,n, has dimension equa
to the number of arcs, but the flow constraints~Sec. II! con-
strain it to lie in ad-dimensional subspace, which we deno
by P8. It is the image ofPr

(k) under a nonsingular linea
transformationM from s to n ~see Sec. IV for explicit rela-
tions!. It follows that neighboring vertices ofPr

(k) correspond
to neighboring vertices ofP8. Two verticesv1 and v2 are
neighbors if and only if any pointl1v11l2v2 ~with
l11l251) on the line segment joining them cannot be wr
ten as a weighted average of vertices in any other way. S
pose two SCs have two contacts, as illustrated schematic
in Fig. 2. Recognizing that the four arc sequences definefour
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distinct SCs, we can consider a general convex combina
including coefficientsl3 for the inner cycle~arcs 2 and 3!
andl4 for the outer cycle~arcs 1 and 4!. A point on the line
segment joining the corresponding vertices inP8 has densi-
ties n15n35l andn25n4512l. Clearly, there are many
convex combinations of vertices yielding the same densit
for example, ifl,1/2 we can takel150, l25122l and
l35l45l. Hence the two SCs correspond to vertices t
are not neighbors. Conversely, if the SCs have fewer t
two contacts there is only one way to express points in d
sity space on the segment joining them as a convex com
nation of SCs, and so they correspond to neighboring ve
ces.

We remark that the reasoning in lemma 2 is very sim
to that leading to decomposition of pairs of SCs~except that
in lemma 2 the SCs need not be related by symmetry!. This
has a simple geometrical interpretation. A symmetry impo
linear constraints on the coupling parametersJa , which
means that the relevant space of correlations is a redu
polytope XPr

(k) obtained by symmetry projection ofPr
(k) .

When symmetry-related pairs of vertices ofPr
(k) are pro-

jected, the ones that become vertices ofXPr
(k) are those that

are connected by an edge. Indeed, the CW definition of
of XGr

(k) ~for X5S or I ) is constructed so as to include a
cycles inGr

(k) that have at most one contact with their sym
metry partners. There is, however, one category of non
composing SC pairs that does not correspond to neighbo
vertices. It has the form of Fig. 2 in the case that symme
forces the weights to satisfyw15w2 andw35w4. This situ-
ation occurs withI symmetry for a type four SC, when th
two contacts are symmetry inverses of each other. Beca
of the weight constraints all four cycles in the diagram ha
equal energy, and the original pair does not decompos
corresponds to two non-neighboring vertices of a quadri
eral face ofPr

(k) , such that all four vertices of the face ma
to the same vertex ofI Pr

(k) under the symmetry.
Lemmas 1 and 2 show how to determine the region

coupling space corresponding to a given ground-state c
figuration; in fact, they provide an algorithm for doing thi
From lemma 1, only neighboring vertices need be cons
ered. Lemma 2 translates the concept of neighboring vert
into properties of graph cycles. In terms of spin configu

FIG. 2. Schematic picture of simple cycles inGr
(k) having two

contacts. The two circles represent the cycles, made up of arc
quences labeled with weightsn1 to n4, and the large dots are th
contacts, which may consist of more than one node.
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tions, a contact between SCs means a common string ofr or
more spins.

Let us now consider the analogous problem in the pr
ence of a symmetryX. Since Lemma 1 relies only on th
Hamiltonian density being a scalar product, it applies
rectly to the symmetry-constrained problem, i.e., the
equalities defining the stable regionW come from neighbor-
ing vertices of the reduced~projected! correlation polytope
XPr

(k) . Lemma 2 also goes through unchanged in the cas
S symmetry, since the definition of SCs forSGr

(k) is the same
as that forGr

(k) . However, lemma 2 does not apply when t
symmetry isI .

As in the proof of lemma 2, it is clear that a pair of SCs
IGr

(k) represent neighboring vertices inI Pr
(k) if and only if

there do not exist two or more new SCs ofIGr
(k) using only

arcs from the original pair. Because SCs forI symmetry
may, when unfolded intoGr

(k) , represent pairs of intersectin
cycles, there is more freedom to form these new SCs tha
the absence of symmetry. We find that when the intersec
does not contain a symmetric node, then one contact betw
the original SCs may be enough to imply new SCs. Spec
cally, we find the following:

Lemma 28. For I symmetry, two SCs ofIGr
(k) correspond

to neighboring vertices if and only if one of the followin
conditions is satisfied:~i! they have no contacts;~ii ! they
have one contact and one of them is of type one~i.e., unfolds
to nonintersecting cycles!; ~iii ! they have one contact tha
includes a symmetric node.~In the last case, both SCs mu
be type two or three.!

Let us illustrate our results with the example ofk53 and
r 52 for bothS andI symmetries. As in Sec. II we shall tak
the allowed spin values to bes50 and61.

Figure 3 shows the graphSG2
(3) . It has 14 arcs, and 5

nodes, each of which implies a flow constraint, leaving
independent arc densities, i.e.,d(S)59. The 9 symmetry-
invariant correlations are s15^s2&, s25^s is i 11&,
s35^s is i 12&, s45^s i

2s i 11
2 &, s55^s i

2s i 12
2 &, plus four cor-

e-

FIG. 3. The reduced graphSG2
(3) .
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56 6463REASONABLE AND ROBUST HAMILTONIANS . . .
relations involving three spins; the Hamiltonian density
written in terms of its 9 coupling parameters
H52(Jasa . The graph has 19 distinct SCs, 5 of which a
D-pairs using the invariant node (00). For example, let
consider theD-pair SCv5(006). To find its stable region
we need only consider the 10 SCs that represent neighbo
v, according to lemma 2. One neighboring SC is the fer
magnetic state (00); comparing its energy to that ofv yields
the conditionJ1.0, so we may setJ151. For each of the 9
other neighboring SCs one can write down the correspond
inequality on the 8 remaining couplings directly from th
graph. We do not list them here; let us merely display
typical solution:

H52^s2&1^s i
2s i 11

2 &1^s i
2s i 12

2 &. ~5!

As in the example of Sec. II it is informative to perform th
transformationt52s221 to Ising spins. The Hamiltonian
becomes

H5^t it i 11&1^t it i 12&12^t&, ~6!

which represents an Ising model with antiferromagne
nearest- and next-nearest-neighbor interactions and a m
netic field favoring the2 state. It is easy to check that th
ground state is (221), or in s variables, (006), as re-
quired. Thus we have the degeneracy and disorder chara
istic of aD pair. Its robustness to perturbations in the Ham
tonian follows from the fact that all 9 correlations tak
identical values on every degenerate configuration; i.e.,
perturbation made up ofs1 to s9 can split the degeneracy.

The corresponding reduced graph forI symmetry is
shown in Fig. 4. For ease in drawing we have distorted
symmetry lineI into a circle and omitted the ferromagnet
arcs joining eachI -invariant node toI. This graph has 32
distinct SCs, most of which are of type three, unfolding
invariant cycles inG2

(3) . There are three~type two! D pairs,
of which we shall consider the example (0021)/(0012).
It has 15 neighbors according to lemma 28, namely, the fer-
romagnetic SCs,, the type one SC (012)/(021), and the
10 type three SCs which use the symmetric node (00). T

FIG. 4. The reduced graphIG2
(3) .
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there are 15 inequalities constraining the 14 disti
I -invariant correlations. Again, we do not list them here, b
simply display a particular solution, which happens to
volve only S-invariant pairwise interactions:

H5^s is i 11&1^s i
2s i 12

2 &. ~7!

The ground state is (. . . 0067006700 . . . ), where the
spins in each (67) segment may be chosen independen
to be (12) or (21). Once again, one can check that th
degeneracy is not split by any of the 14 possibleI -invariant
perturbing terms that may be added to the Hamiltonian.

IV. EXPLICIT D-PAIR HAMILTONIAN

The techniques described in the previous section can
used to find the region of stability corresponding to a
given D-pair, for S or I symmetry. However, the analysi
becomes tedious for largek and r . In this section, we de-
scribe a simple construction for finding a single point,H* , in
the stable region.

The constuction is based on the observation that the
weights, which determine the Hamiltonian, can all be cho
independently, i.e., for any choice of arc weights there ex
a corresponding Hamiltonian.~This statement should not b
confused with the fact that the arcdensitiesare not indepen-
dent because of the flow constraints, and hence that the
from arc weights to couplingsJa is not one-to-one.! Given a
D pair defined by a SCv of XGr

(k) , we defineH* as the
Hamiltonian corresponding to the following assignment
arc weights:wt is 21 if the arct occurs in the unfolding of
the D-pair SC into two intersecting cycles inGr

(k) , and 0
otherwise. In terms of arc densities,H* is

H* 52 (
tPv

~nt1n t̄ !, ~8!

where the overbar denotes symmetry inversion. By const
tion, the givenD-pair phase is the ground state ofH* : since
the energy is the average arc weight, any of theD-pair spin
configurations has energy21, while other configurations us
some weight 0 arcs and have higher energy.

In Eq. ~8!, H* is written in terms of arc densities. Th
latter are related to the correlations as follows.
t5(t0 ,t1 , . . . ,t r), then

nt5^ds it0
ds i 11t1

•••ds i 1rtr
&. ~9!

The Kronecker delta, as a function of a spin variables, can
be written as a degreek21 polynomial according to

dsh5 )
h8Þh

~s2h8!/~h2h8!5 (
p50

k21

xphsp. ~10!

The product is over all spin valuesh8 not equal toh, and the
second equality defines the numbersxph as the coefficients
in the polynomial expansion of the product. When this
substituted into Eq.~9! the arc densities are given as a line
combination of spin correlations. From Eq.~8!, this yields an
expression forH* in terms of the correlations. As an ex



n

e

r

w

o

ng
s
d
ns

ch

o

u

o
p
n

e
f

e-
ny

e
red
il-
ls is,
hat
g a
d

re-
nly
n
. We
the
e a
ve

gs
fall

ic
m-
ac-
ia-
by
e-
ical
cy

rtur-
t

on-
or-

, the
b-

i

s
are
ch
s
s-
a-
es-
er

o-
und

ns

6464 56GREG WATSON, GEOFF CANRIGHT, AND FRANK L. SOMER, JR.
ample, when this procedure is applied to theD-pair (60) for
k53, r 51 with S symmetry, the result is the Hamiltonia
~3!, discussed in Sec. II.

Let us investigate further the structure ofH* . Its expres-
sion in terms of correlations, from substituting Eqs.~10! and
~9! into ~8!, is

H* 52(
j 51

p

(
p050

k21

(
p150

k21

•••

3 (
pr50

k21

xp0t j
xp1t j 11

•••xprt j 1r

3^s i
p0s i 11

p1
•••s i 1r

pr &1s.i. ~11!

Here, t j denotes thej th spin ~using any arbitrary starting
point! of the configuration defined by the SCv, andp is the
period of v. The second term, not written explicitly, is th
symmetry inverse~s.i.! of the first—that is, everyt° t̄ .
Consider a rangel correlationsa5^s i

q0s i 11
q1

•••s i 1 l
ql &, where

q0 and ql are both nonzero. Ifl ,r , there are (r 2 l 11)
terms in Eq.~11! contributing toJa , the coupling paramete
multiplying sa in H* . We find

Ja5(
j 51

p

(
m50

r 2 l

x0t j
•••x0t j 1m21

xq0t j 1m
•••xqlt j 1m1 l

3x0t j 1m1 l 11
•••x0t j 1r

1s.i. ~12!

The structure of this expression is seen most clearly if
consider initially the case of Ising spins,k52. Taking the
allowed spin values to bes561, we havex0h51/2 and
x1h5h/2, and we arrive at the result

Ja522~r 11!~r 2 l 11!(
j 51

p

t j
q0t j 11

q1
•••t j 1 l

ql 1s.i. ~13!

This result is quite significant. It says that the value ofJa is,
apart from a constant 22(r 11) that we shall ignore, equal to
(r 2 l 11)@ ta1s.i.#, whereta is the correlationsa evaluated
in the spin configuration$t i% of the D pair.

Since a correlation for Ising spins has magnitude at m
1, this implies the bounduJau<(r 2 l 11). Further, we note
that ta is expected not to be strongly dependent on the ra
l of the couplingJa . Roughly speaking, spin configuration
that have long-range correlations tend also to be correlate
short range. This idea is borne out by explicit computatio
for instance, for the I symmetry r 55 Ising D pair
(1222112), there are 23 symmetric correlations, ea
of which takes one of the values21/7 or 3/7, with no sys-
tematic dependence onl . Thus, the dominant contribution t
Ja comes from the factor (r 2 l 11). As a function of dis-
tance, this represents a linear decrease to zero at the c
rangel 5r 11.

For k.2, the situation is similar. Of course, the values
the couplings depend on the choice of the set of allowed s
values, which has been left arbitrary so far. However, for a
k there exists a choice with the property thatx0h is indepen-
dent of h, namely, letting$s% be the complexkth roots of
unity. For this choice, the sum~12! simplifies as it did for
e

st

e

at
;

toff

f
in
y

Ising spins, yielding ~apart from a constant! Ja5(r 2 l
11)@ ta1s.i.#. Under the assumption that the correlationsta
depend weakly onl , we find again that the dominant distanc
dependence ofJa is a linear falloff to zero beyond the cutof
range.

V. DISCUSSION

The existence ofD-pair phases is interesting from a th
oretical point of view. However, we are not aware of a
obvious candidate material for their realization in nature. W
note that there is an entire class of materials, namely, laye
solids or polytypes, that is well modeled by effective Ham
tonians such as those studied here. This class of materia
however, quite large; and the few effective Hamiltonians t
are known from this class do not show promise of havin
D-pair phase as the ground state.~See the discussion an
references in Ref.@12#.!

Thus, there are significant obstacles to findingD pairs in
practice. However, the results of Sec. IV of this paper
move one potential obstacle: the possibility that the o
Hamiltonians exhibitingD-pair phases are pathological i
the dependence of their coupling parameters on distance
would like the couplings to decrease smoothly to zero at
cutoff range, otherwise it would seem unphysical to impos
rigid cutoff beyond which there are no interactions. We ha
constructed an explicit Hamiltonian for arbitraryk and r ,
which hasD-pair ground states. Encouragingly, its couplin
are very well behaved: as a function of distance, they
linearly to zero at the cutoff.

Remaining obstacles concern the robustness ofD-pair be-
havior. AlthoughD-pairs are not destroyed by symmetr
perturbations of sufficiently short range or by nonzero te
perature, they are in general destroyed by including inter
tions beyond the cutoff. They are also destroyed by dev
tions from perfect symmetry caused, for example,
external fields—which may or may not be strictly zero, d
pending on the symmetry in question, and on the phys
identity of the ‘‘spins.’’ However, even when the degenera
is broken in such ways, behavior characteristic ofD pairs
may be observable at a suitable energy scale. If the pe
bations breaking theD-pair symmetry are small, they are no
manifest except at very small temperatures. At low but n
zero temperatures, one would still expect to observe dis
dered states and nonzero entropy density. In that case
techniques of Sec. III of this paper apply directly to the pro
lem of characterizing theD-pair region. ~Possible experi-
mental signatures ofD-pairs have been investigated by Y
and Canright@12#.!

Another potential obstacle is the limitation to problem
involving classical, discrete units. However, such models
likely to be good approximations for certain problems, su
as stacking polytypes of crystals~see CW and reference
therein! where the ‘‘spin’’ represents the discrete set of po
sible configurations of a single lattice plane. Another limit
tion is the restriction to one-dimensional models. The qu
tion of whether similar behavior is possible in high
dimensions is unexplored, although certain frustrated tw
dimensional models are known to have degenerate gro
states of large periodicity@13#. Finally, although we have
shown thatD-pair phases are possible with Hamiltonia
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that are not obviously unphysical, there may be more su
physical reasons—arising, say, from quantum-mechan
considerations—which may argue against effective class
Hamiltonians havingD pairs as ground states. For examp
effective classical Hamiltonians representing the binding
ergy of mobile electrons in an ionic background tend to fa
periodic ionic arrangements@14#. We leave these question
for future work.
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